Skip to main content

RoostGPT AI Keys Requirements

AI Configuration Keys

This document provides the required environment variables for configuring different AI providers.


1. OpenAI Configuration

Required Environment Variables

Variable Name Required Description
OPENAI_API_KEY Yes Your OpenAI API key
OPENAI_API_MODEL Yes Model to use 

Configuration Example

OPENAI_API_KEY=sk-proj-xxxxxxxxxxxxxxxxxxxx
OPENAI_API_MODEL=gpt-4o

2. Google Gemini Configuration

Required Environment Variables

Variable Name Required Description
GEMINI_API_KEY Yes Your Google AI Studio API key for accessing Gemini models
GEMINI_MODEL Yes Gemini model to use. Options: gemini-pro, gemini-pro-vision, gemini-ultra, etc.

Configuration Example

GEMINI_API_KEY=AIzaSyxxxxxxxxxxxxxxxxxxxxxxxxxx
GEMINI_MODEL=gemini-pro

3. AWS Bedrock Configuration

Required Environment Variables

Variable Name Required Description
AWS_BEDROCK_MODEL Yes Model ID to use. Examples: anthropic.claude-v2, anthropic.claude-3-sonnet-20240229-v1:0, amazon.titan-text-express-v1
AWS_DEFAULT_REGION Yes AWS region where Bedrock is available. Examples: us-east-1, us-west-2, eu-west-1
AWS_ACCESS_KEY_ID Yes AWS access key ID for authentication
AWS_SECRET_ACCESS_KEY Yes AWS secret access key for authentication

Configuration Example

AWS_BEDROCK_MODEL=anthropic.claude-3-sonnet-20240229-v1:0
AWS_DEFAULT_REGION=us-east-1
AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Important Notes

  • Model availability varies by region. Check AWS Bedrock documentation for supported models in your region.
  • You may need to request model access through the AWS Bedrock console before using certain models.
  • Ensure your IAM user has necessary permissions for bedrock:InvokeModel action.

4. Claude AI Configuration

Required Environment Variables

Variable Name Required Description
CLAUDE_AI_API_KEY Yes Your Anthropic API key for accessing Claude models
CLAUDE_AI_MODEL Yes Claude model to use. Examples: claude-3-opus-20240229, claude-3-sonnet-20240229, claude-3-haiku-20240307, claude-2.1, claude-2.0

Configuration Example

CLAUDE_AI_API_KEY=sk-ant-api03-xxxxxxxxxxxxxxxxxxxxxxxxxx
CLAUDE_AI_MODEL=claude-3-sonnet-20240229

5. Azure OpenAI Configuration

Required Environment Variables

Variable Name Required Description
AZURE_OPENAI_ENDPOINT Yes Your Azure OpenAI resource endpoint URL (e.g., https://your-resource.openai.azure.com/)
AZURE_DEPLOYMENT_NAME Yes Name of your deployed model in Azure OpenAI Studio (e.g., gpt-4-deployment, gpt-35-turbo-deployment)
AZURE_OPENAI_KEY Yes API key for your Azure OpenAI resource (Key 1 or Key 2 from Azure portal)

Configuration Example

AZURE_OPENAI_ENDPOINT=https://your-resource-name.openai.azure.com/
AZURE_DEPLOYMENT_NAME=gpt-4-deployment
AZURE_OPENAI_KEY=1234567890abcdef1234567890abcdef

Important Notes

  • Azure OpenAI requires approval. Apply for access if you haven't already.
  • Model availability varies by region. Choose your region based on available models.
  • Deployment names are custom - you choose them when deploying models in Azure OpenAI Studio.
  • The endpoint URL should end with a trailing slash (/).