Roost on AWS

AWS configuration for Roost

e Manual Deployment

o 1. High Level Architecture
o 3. Prerequisites
o 4. OAuth Provider Setup

o 5. Database Setup

e Using Terraform

o 1. Getting Started
o 2. OAuth Provider Setup

o 3. Terraform variables

Manual Deployment

Manual Deployment of Roost on AWS

Manual Deployment

1. High Level Architecture

Roost Ephemeral Environments as a Service (EaaS) platform provides a temporary, encapsulated
deployment of a software application. Roost's Ephemeral environments provide robust, on-demand
platforms for running tests, previewing features, and collaborating asynchronously across teams.
Below is a high-level diagram of the AWS components required to deploy Roost on AWS.

kigRoast-AVS #hrehitectiure.png

https://roost-bookstack.s3.amazonaws.com/uploads/images/gallery/2023-03/JTzTygkNu1su1zMH-1-1-roost-aws-architecture.png

Manual Deployment

3. Prerequisites

Below are the infrastructure requirements for running Roost on AWS

Infrastructure Requirements.

ALB with proper certificates

OAuth Details (Okta/ GoogleAuth etc.)

EC2 Instance (c5.2xlarge) x 3 and (t2.micro) x 1
RDS Database (AWS Aurora)

Execute Roost Control plane Script.

e whH

Manual Deployment

4. OAuth Provider Setup

Roost supports various authentication mechanisms as mentioned below

Github
Google
Microsoft
Linkedin
Okta

e whH

OKTA Auth Client Setup.

e Sign in to your OKTA account with admin privileges (If you do not have an existing Okta

account, then sign-up at Home | Okta Developer)
e From the left navigation menu, go to Applications -> Applications.
e Select Create App Integration - OIDC - OpenlID Connect - Web Application, then click
Next
e Fill in the suitable App integration name, upload the logo.
e Add Sign-in redirect URIs
o https://<DNS_NAME>/login
e Allow Access to users thru Assignments - Controlled Access
o Select the groups of users or Allow access to everyone
e Save and Make a note of the Okta Client ID and the Client Secret (It is needed later in the
config below)
e From the left navigation menu, go to Security -> API
e Make a note of Issuer URI for default Authorisation Server
o something like https://{your_domain}.okta.com/oauth2/default

Google Auth Client Setup.

Integrating Google Sign-In into your web app | Google Sign-In for Websites | Google

Developers

Login to https://console.cloud.google.com/apis/credentials

Create Credentials, Select OAuth Client and Application Type as Web Application
Add Authorised JavaScript Origin as

http://developer.okta.com/
https://developers.google.com/identity/sign-in/web/sign-in
https://developers.google.com/identity/sign-in/web/sign-in
https://console.cloud.google.com/apis/credentials

o https://roostapi.roost.io:60001
o https://<DNS_NAME

o http://localhost:3000

o http://localhost:4200
e Add Authorised redirect URIs

o https://<DNS_NAME>/login

o https://<DNS_NAME>/api/auth/redirect/google

o https://roostapi.roost.io:60001/auth/redirect/google
e Download the JSON

e Make a note of the Google Client ID and the Client Secret (It is needed later in the config
below)

https://roostapi.roost.io:60001/
http://localhost:3000/
http://localhost:3000/
https://roostapi.roost.io:60001/auth/redirect/google

Manual Deployment

5. Database Setup

Roost stores the status of the EaaS workflow and other relevant information in Database. Below are
the steps to setup an Amazon Aurora DB in AWS

Amazon Aurora

Select RDS

Choose Create Database

Select “Easy Create” for “Amazon Aurora with MYSQL compatibility.”

Modify the RDS Security Group to allow TCP port 3306 access to the Control plane

Instance security group only

5. Make a note of the writer instance database end-point, user, and password (It is needed
later in the config below)

6. Create a new user with read-write privileges and avoid using an admin login.

W

Sample command to create a user using MySQL CLI

Provide password on prompt

mysql -h <SQL Host URL> -u <root| master| admin> -p

CREATE USER 'Roost' @ %' identified WITH mysql native password by 'Roost#123';

CREATE DATABASE roostio;

GRANT ALL on roostio.* to 'Roost' @ %';

Execute the Roost Schema file, if available

\. /var/tmp/Roost/db/roost. sql

Using Terraform

Deploy Roost on AWS using Terraform

Using Terraform

1. Getting Started

Roost provides terraform scripts to spin up and configure the EaaS platform easily. Below are the
steps for deploying Roost on AWS using Terraform

High-Level Architecture

Roost Terraform scripts create the below components in the AWS cloud

Reost-AWS-Aschitecture.png

Prerequisites

e User Account with Admin privileges / Policies enabled to run terraform scripts
e region

e route53 hosted zone_id

e €C2_ami

e enterprise_dns

e ip_block_vpc (VPC CIDR where Roost would be set up)

e okta_client_id or appropriate auth provider (please refer link here)
e company

Clone the Repo

https: //github. com/roost-io/terraform. git

https://roost-topicstack.s3.amazonaws.com/uploads/images/gallery/2023-03/JTzTygkNu1su1zMH-1-1-roost-aws-architecture.png
https://docs.roost.ai/topics/roost-on-aws/page/2-oauth-provider-setup

Using Terraform

2. OAuth Provider Setup

Roost supports various authentication mechanisms as mentioned below

Github
Google
Microsoft
Linkedin
Okta

e whH

OKTA Auth Client Setup.

e Sign in to your OKTA account with admin privileges (If you do not have an existing Okta

account, then sign-up at Home | Okta Developer)
e From the left navigation menu, go to Applications -> Applications.
e Select Create App Integration - OIDC - OpenlID Connect - Web Application, then click
Next
e Fill in the suitable App integration name, upload the logo.
e Add Sign-in redirect URIs
o https://<DNS_NAME>/login
e Allow Access to users thru Assignments - Controlled Access
o Select the groups of users or Allow access to everyone
e Save and Make a note of the Okta Client ID and the Client Secret (It is needed later in the
config below)
e From the left navigation menu, go to Security -> API
e Make a note of Issuer URI for default Authorisation Server
o something like https://{your_domain}.okta.com/oauth2/default

Google Auth Client Setup.

Integrating Google Sign-In into your web app | Google Sign-In for Websites | Google

Developers

Login to https://console.cloud.google.com/apis/credentials

Create Credentials, Select OAuth Client and Application Type as Web Application
Add Authorised JavaScript Origin as

http://developer.okta.com/
https://developers.google.com/identity/sign-in/web/sign-in
https://developers.google.com/identity/sign-in/web/sign-in
https://console.cloud.google.com/apis/credentials

o https://roostapi.roost.io:60001
o https://<DNS_NAME

o http://localhost:3000

o http://localhost:4200
e Add Authorised redirect URIs

o https://<DNS_NAME>/login

o https://<DNS_NAME>/api/auth/redirect/google

o https://roostapi.roost.io:60001/auth/redirect/google
e Download the JSON

e Make a note of the Google Client ID and the Client Secret (It is needed later in the config
below)

https://roostapi.roost.io:60001/
http://localhost:3000/
http://localhost:3000/
https://roostapi.roost.io:60001/auth/redirect/google

Using Terraform

3. Terraform variables

Please follow the below steps to modify terraform files to incorporate the

e Clone the GitHub repo.

git clone https: //github. com/roost-io/terraform. git

e Copy terraform. tfvars.original as terraform. tfvars
e Fill in the below details

region

route53 hosted zone id

ec2 ami

enterprise_dns

ip _block vpc (VPC CIDR where Roost would be setup)
okta client id or appropriate auth provider

company (Provided by Roost team)

Terraform Variable Definitions

Field Values
prefix "terraform-eaas"
region "us-west-1"
azl_suffix "p"
az2_suffix "c"
deletion_protection false

route53_hosted_zone_id

enterprise_dns "eaas.example.com"

ec2_ami "ami-03dfédea56f8aa618"

Description

key pair

generate_key pair

device_name

ip_block_vpc

instance_type_controlplane

instance_type_jumphost

google_client_id

google_client_secret

github_client_id

github_client_secret

linkedin_client_id

linkedin_client_secret

azure_client_id

azure_client_secret

okta_client_id

okta_client_secret

okta_issuer

roost_jwt_token

company

company_logo

enterprise_email_domain

"roost-eaas-keypair"

true

"Sdh“

"172.32.255.192"

"t3.large"

"t3.micro"

"0oadbweaxcqn2sfTu5d7"

"D50RtWXUWCcl9gp1312dVtuSoumU4
VFECO4wSsgAOQ"

"https://roost.ai/hubfs/logos/Roost.ai-
logo-gold.svg"

"example.com"

admin_email

senders_email

is_own_mysql

mysql_host

mysql_password

mysql_username

mysql_port

mysql_db_name

mysql_root_password

senders_email_pass

email_smtp_host

"admin@email"

"'sender@email"

false

"mysqldb_host_url"

"Roost#123"

"Roost"

3306

"roostio"

"Admin#123"

