
Manual Deployment of Roost on AWS

1. High Level Architecture
3. Prerequisites
4. OAuth Provider Setup
5. Database Setup

Manual Deployment

Roost Ephemeral Environments as a Service (EaaS) platform provides a temporary, encapsulated
deployment of a software application. Roost's Ephemeral environments provide robust, on-demand
platforms for running tests, previewing features, and collaborating asynchronously across teams.
Below is a high-level diagram of the AWS components required to deploy Roost on AWS.

1.1 Roost-AWS-Architecture.pngImage not found or type unknown

1. High Level Architecture

https://roost-bookstack.s3.amazonaws.com/uploads/images/gallery/2023-03/JTzTygkNu1su1zMH-1-1-roost-aws-architecture.png

Below are the infrastructure requirements for running Roost on AWS

1. ALB with proper certificates
2. OAuth Details (Okta/ GoogleAuth etc.)
3. EC2 Instance (c5.2xlarge) x 3 and (t2.micro) x 1
4. RDS Database (AWS Aurora)
5. Execute Roost Control plane Script.

3. Prerequisites

Infrastructure Requirements

Roost supports various authentication mechanisms as mentioned below

1. Github
2. Google
3. Microsoft
4. Linkedin
5. Okta

Sign in to your OKTA account with admin privileges (If you do not have an existing Okta

account, then sign-up at Home | Okta Developer)
From the left navigation menu, go to Applications -> Applications.
Select Create App Integration → OIDC - OpenID Connect → Web Application, then click
Next
Fill in the suitable App integration name, upload the logo.
Add Sign-in redirect URIs

https://<DNS_NAME>/login
Allow Access to users thru Assignments → Controlled Access

Select the groups of users or Allow access to everyone
Save and Make a note of the Okta Client ID and the Client Secret (It is needed later in the
config below)
From the left navigation menu, go to Security -> API
Make a note of Issuer URI for default Authorisation Server

something like https://{your_domain}.okta.com/oauth2/default

Integrating Google Sign-In into your web app | Google Sign-In for Websites | Google
Developers
Login to https://console.cloud.google.com/apis/credentials
Create Credentials, Select OAuth Client and Application Type as Web Application
Add Authorised JavaScript Origin as

https://roostapi.roost.io:60001

4. OAuth Provider Setup

OKTA Auth Client Setup

Google Auth Client Setup

http://developer.okta.com/
https://developers.google.com/identity/sign-in/web/sign-in
https://developers.google.com/identity/sign-in/web/sign-in
https://console.cloud.google.com/apis/credentials
https://roostapi.roost.io:60001/

https://<DNS_NAME
http://localhost:3000
http://localhost:4200

Add Authorised redirect URIs
https://<DNS_NAME>/login
https://<DNS_NAME>/api/auth/redirect/google
https://roostapi.roost.io:60001/auth/redirect/google

Download the JSON
Make a note of the Google Client ID and the Client Secret (It is needed later in the config
below)

http://localhost:3000/
http://localhost:3000/
https://roostapi.roost.io:60001/auth/redirect/google

Roost stores the status of the EaaS workflow and other relevant information in Database. Below are
the steps to setup an Amazon Aurora DB in AWS

1. Select RDS
2. Choose Create Database
3. Select “Easy Create” for “Amazon Aurora with MYSQL compatibility.”
4. Modify the RDS Security Group to allow TCP port 3306 access to the Control plane

Instance security group only
5. Make a note of the writer instance database end-point, user, and password (It is needed

later in the config below)
6. Create a new user with read-write privileges and avoid using an admin login.

Sample command to create a user using MySQL CLI

Provide password on prompt

mysql -h <SQL Host URL> -u <root|master|admin> -p

CREATE USER 'Roost'@'%' identified WITH mysql_native_password by 'Roost#123';

CREATE DATABASE roostio;

GRANT ALL on roostio.* to 'Roost'@'%';

Execute the Roost Schema file, if available

\. /var/tmp/Roost/db/roost.sql

5. Database Setup

Amazon Aurora

